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ABSTRACT 

A lattice model of the dynamical behavior of a random-coil polymer chain in solution 
is described. Simulation of the model by a high-speed digital computer is discussed. 
The model appears especially suitable for the study of the effects of excluded volume 
interactions upon the motions of random-coil polymer chains. 

Lattice models of random-coil polymer chains have seen extensive use in the 
study of the equilibrium properties of such chains [l]. In particular, they have 
proven useful for Monte Carlo studies of the effects of interference between 
different parts of a chain (the so-called excluded volume effects), which have thus 
far not yielded to analytical treatment. Not surprisingly, less attention has been 
paid to the effects of excluded volume interactions upon the dynamical behavior 
of random-coil chains, although the majority of the interesting physical properties 
of these chains are dynamical rather than equilibrium properties. In this paper, 
we describe a model of randomly moving lattice-model polymer chains in solution. 
The model has been simulated on digital computers in order to study both 
dynamical and equilibrium properties of random-coil chains [2-51. A variation of 
the model has also been used by Bluestone and Vold [6], and by Bluestone and 
Cronan [7]. 

DEXRIPTION OF THE MODEL 

Although the model used has previously been described elsewhere [2,4], for 
convenience we shall briefly restate its definition. The configuration of a random- 
coil chain in solution at a given time is represented by a string of connected points 
on a simple cubic lattice in three dimensions, the points (which we shall refer to as 
beads) lying on cube vertices, and the connections lying along cube sides. Motion 
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of the chain resulting from random collision with solvent is s~rnu~at~d by c~o~s~~g 
one bead at random and moving it in a way to be described, then again choosing a 
bead at random and moving it, and so forth. Since the unit event is a motion of at 
most one bead, cooperative motions of large segments of the chain occur only as 
the result of individual bead motions. 

Chains may be studied either with or without an excluded volume restriction. 
The rules for moving a selected bead depend upon the presence or absence of 
excluded volume. For convenience, we first describe their operation without 
excluded vohrme. Let the beads be numbered along the chain, from bead 1 at one 
end to bead N at the other, and let ri be the vector from some arbitrary origin to 
the j-th bead. Then ifj is not 1 or 8, selection of the j-th be 
from ri to rj+l i rjel - rj . The possible moves are shown s 

e may note that chain connectivity is not violated by moves of this type, and that 
the new position of a bead is always a lattice point. 
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FIG. 1. Possible moves of a non-end bead. Beads j - 1, j, and j + 1 are shown in each case. 
(a): Angle between successive bead comections is 180”; no move is made. 
(b): Angle between successive bead connections is 90”. 
(c): Angle between successive bead connections is O”, i.e., beads j - 1 and j + 1 occupy 

the same lattice site. 

en the first or last bead is selected, it is moved to ne of the four positions, 
at random, which correspond to changing the rection of the hne con- 

necting it with the next bead by 90 degrees. 
In this model, the excluded volume restriction is introduced by requirmg that no 

two beads occupy the same lattice site. Thus, the configuration shown in Fig. I(c) 
cannot arise for a chain with excluded volume. For such a chain, after a bead has 
been selected, a possible new position for it is computed as described above for 
chains without excluded volume. The computed new site is then checked to see 
whether there is already another bead at that position. If there is not, the move is 
made; if there is, no move is made. 
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Several properties of the model may be noted. First, chain motion is always 
reversible. The change in configuration produced by selecting a particular bead 
may be undone by reselecting the same bead. A more complex change produced by 
selecting beads in some sequence may be reversed by choosing the same bead 
sequence in reverse order. 

Next, we consider the ergodic properties of the model. We note first that under 
the rules given for chain motion, the parity of the sum of the x-, y-, and z-coordi- 
nates of each bead remains constant, being even and odd alternately for the beads 
along the chain. In a sense, therefore, half the possible positions are not accessible 
to a given chain. Of the half which are accessible, however, any may be reached 
from any other in a finite number of steps in the absence of the excluded volume 
restriction, provided the two positions are a finite distance apart. It follows [S] 
that the equilibrium dimensions of the model without excluded volume will just 
be those of an unrestricted random walk on a simple cubic lattice. 

For the model with excluded volume the situation is more complicated. It is no 
longer true that any configuration can be reached from any other. Even for relatively 
short chains, there are configurations for which no move at all is possible. An 
example for a chain of 22 beads is shown in Fig. 2. Clearly, any configuration 

FIG. 2. A completely immobile configuration of a chain of 22 beads with excluded volume. 

formed by adding steps to either end of the configuration shown in Fig. 2 will be 
permanently immobilized in the sense that the part shown in Fig. 2 can never move, 
no matter what the rest of the chain does. It seems reasonable to guess that all posi- 
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tions in which no moves are forbidden by the exclude 
accessible to each other, but this is only conjecture at p 
set of possible configurations is clearly not the same as 
random walks on a simple cubic lattice. The agreement previously noted 
eq~i~~bri~m dimensions obtained from self-avoiding random walks 
obtained from our dynamical model therefore suggests that the 
~o~fi~ura~~ons do not contribute noticeably to the mean 

COMPUTER REALIZATION OF THE 

programming the model we have described on a digital computer is for the most 
part too straightforward to warrant detailed description. However, it may 
relevant to note a few points of technique. For the longest chains studied thus far 
(64 beads), the longest relaxation times, which are the ones of most interest, require 
of the order of a quarter of a million individual bead selections and motions. fn 
order to obtain statistically significant samples, we need to run the progra 
many such relaxation times. There is therefore some justification for writing 
sections of the program which actually test and move the chain in su 
make them as fast as possible. In this section, we describe some of the methods used 
for this purpose. 

The position of a chain of N beads at any given time is stored in 
a set of 3N integers between 0 and 63, specifying the x-, y-, and z-coo~~i~at~~ of 
each bead. If the motion of the chain attempts to cause any bead coo~~~~a~e to 
become less than zero or greater than 63, the origin is translated so 
the chain coordinates in the range (0,63) before the move is made. The tr 
applied to the origin is stored for future reference when tra~s~atio~~~ 
constants are to be computed. The three coordinates of each bead are 
one 36bit computer word, and vector addition and subtraction 
directly by performing integer arithmetic upon the complete word. 
are so located in the word that they may be transferred directly to index registers 
when necessary, without prior unpacking and shifting. 

For the models with excluded volume, a second representation of the chain 
position is maintained. This consists of a “map” of the 64 x 64 x 64 region of the 
lattice described by the bead position vectors. The map is a large array of core 
storage in which each bit corresponds to one lattice point. The bit is set to “‘I” if 
the lattice point is occupied by a bead, and to “0” otherwise. hen a baad is 
moved, the bit corresponding to its old position is cleared, and the bit corresponding 
to its new position is set to “1”. In order to find out whether a given lattice site is 
vacant, it is only necessary to locate and examine one bit. The time required for 
this procedure is essentially independent of the number of laeads in the chain. 
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Similar techniques are described in a recent paper by Mazur and Mccrackin [lo]. 
Selection of a bead to be tested and perhaps moved is accomplished by the use 

of a pseudo-random number generator. In the work to date with the model [2-51, 
a generator described by Orcutt et al [11] has been used. It is a multiplicative 
congruential generator with a multiplier of 218 + 3 and a modulus of 235. Its 
statistical properties have been previously investigated and found satisfactory by 
Hull and Dobell [12]. We use the generator primarily to select “at random” a 
single bead on a chain of up to 64 beads. We have therefore tested the generator by 
using it to produce long sequences of integers between 1 and 64, and have tested the 
properties of the sequences in two ways. In the first test, the autocorrelation [13] in 
the bead number was obtained for 76 different intervals, consisting of: All intervals 
from 1 to 64; all powers of 2, 3, 5, and 10 less than 2000; and the interval 2000. The 
number of samples of the autocorrelation obtained depended upon the interval, 
but was greater than one million for all intervals less than 100, and greater than half 
a million for all others except the interval 2000, for which 24576 samples were 
obtained. For each interval, both the autocorrelation and its sample standard 
deviation of the mean were obtained. Of the 76 values obtained, 33 were negative 
and 46 were smaller in magnitude than their own standard deviations of the mean, 
as compared with expected values of 38 and 52, respectively, for normally distrib- 
uted random variables. The largest ratio of a magnitude to its standard deviation 
of the mean, obtained for an interval of 60, was 2.43. These results would be 
appropriate to a true random number generator. 

The bead sequences were further tested by generating about 25 million pairs of 
bead numbers and obtaining the l- and 2-dimensional distributions of the values. 
A &i-squared test was made of the distributions, based on the assumption that all 
pairs of bead numbers are equally probable. The normalized chi-squared values 
(defined as the &i-squared found, less the mean and divided by the standard 
deviation of chi-squared for the assumed distribution) were found to be +O.gl and 
+ 1.85 for .the I- and 2-dimensional distributions, respectively. These values would 
not be inconsistent with a truly random generator. It can be shown [14] that the 
distribution of successive triplets for this generator is extremely non-random. 
However, since triplets have no special significance in the models one can hope that 
the seemingly random behavior of pairs of values is sufficient for our purpose. The 
similarity of the behavior of the computer model without excluded volume to that 
of a continuous ball-and-spring model, noted elsewhere [4, 51, lends support to 
this point of view. 

When a simulation is begun, the program reads in the initial chain configuration 
and the initial value of the pseudo-random number, together with parameters 
specifying the kind and duration of the simulation, the properties to be sampled, 
etc. The program then selects beads one at a time with the pseudo-random number 
generator, and tests and moves them in accordance with the foregoing rules. 
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Periodically the simulation is interrupted and properties of interest (e.g., en 
length of the chain) are sampled. Autocorrelation furrctions are 
a table of past values of sampled quantities. Each time a sampl 
it replaces the oldest value in the table. The products needed for s 
correlation functions are formed periodically from the table entries. 
simulation is completed, means and variances of quantities of interest 
out and also stored on magnetic tape, to be combined wit 
such sim~Iations and analyzed. The final chain co~fig~~atio 
number are also punched out on cards, so that they may be 
for the next simulation if desired. 

CONCLUSION 

It should be clear that the model described in the preceding sections bear 
the most casual resemblance to a real polymer chain. Realism of detail is saer 
for the sake of speed of computation. Its primary usefulness, therefore, 
lie in the study of long-range, cooperative motions of chain segments, w 
should be relatively independent of the precise short-range details of c 
structure and motion. The results of studies sf chains wit~o~t excluded v~I~rne 
previously cited, suggest that this is the case. On the other hand, the way i :I 
we introduce and use the excluded volume condition can only be just Y 
physical intuition at present. 
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